

Memory-aware Communication – an Experimental Study with MPI*

* This research was supported in part by national science foundation under NSF grant EIA-0130673, ANI-0123930, ACI-0130458, and
by Army Research Office under ARO grant DAAD19-01-1-0432.

Surendra Byna Kirk W. Cameron Xian-He Sun
Department of Computer

Science, Illinois Institute of
Technology, Chicago, IL

renbyna@iit.edu

Department of Computer
Science and Engineering,
Univ. of South Carolina,

Columbia, SC
kcameron@cse.sc.edu

Department of Computer
Science, Illinois Institute of
Technology, Chicago, IL

sun@iit.edu

Abstract

Assuming network transfer is the dominant factor of
communication, current communication models estimate
only network related delays and are inadequate to
address other performance factors such as memory
access delay. Modern computer architectures employ
complex hierarchical memory systems to compensate for
the performance gap between processor and memory,
nonetheless significant delays occur when transmitting
non-contiguous data. This study revisits the common
assumption that memory access patterns are a negligible
factor of communication. Our experimental results show
non-contiguous memory access may increase the
communication cost multi-fold in a cluster environment,
confirming the need for rethinking MPI implementation
and parallel algorithm design, and motivating discussion
of a memory-aware communication model.

1. Introduction

The processor–memory performance gap [3] is a
bottleneck for high performance computer systems. Many
architectural advances in memory hierarchy design have
targeted this gap in an effort to increase the effective
bandwidth of memory access. Techniques that overlap
latency, reduce cache misses and increase the instruction
throughput of the processor are common in commodity
architectures. Implementations include features such as
larger and faster hierarchical caches, blocked data
transfer, non-blocking transfers, superscalar and out-of-
order execution, and branch prediction. Despite these
technical advances, memory performance remains the
dominant contributor to execution time in sequential
codes.

The communication performance of parallel programs is

not immune to the effects of memory latency especially in
the case of non-contiguous message communication, where
a message distributed at various locations of memory. Non-
contiguous message communication is common in parallel
computing. However, assuming network is the dominant
factor of communication, memory factor has been largely
ignored in current communication models. Our
experimental results show that recent technology advances
have changed the communication cost distribution. Memory
access pattern has become an increasingly important factor
of communication. Non-contiguous communication may
increase communication overhead by multi-fold in a cluster
environment. The high cost of non-contiguous
communication requires a rethinking of parallel algorithm
design, MPI [11, 9] implementation, and calls for a memory
aware communication model.

Message passing of non-contiguous data types is
common in parallel programming. The spatial locality of
data impacts the performance of parallel algorithms such as
the ocean grid solver and Barnes-Hut [6] and other domain
decomposition based algorithms. The ocean grid solver
exchanges data along horizontal and vertical boundaries. In
many domain partition based solutions the boundary data is
contiguous and spatial locality is optimal in the cache.
When the boundary is non-contiguous (e.g. column
boundary in a row-ordered language implementation), the
amount of cache misses increase based on the contiguity of
the data. The Barnes-Hut application initially operates on
adjacent particles with good spatial locality for
communication. As the simulation progresses, particles
travel through physical space decreasing the spatial locality
of communication causing additional cache-related delays.
Another example, transmission of a sub-matrix may require
a series of non-contiguous accesses incurring more memory
latency than contiguous accesses of the same size.

Transmissions of data in such cases often utilize the
message-passing model, a widely used and accepted
parallel programming interface [11].

To quantify the impact of non-contiguity on
communication, we study the total cycles, cache misses,
and load/store instructions for contiguous and non-
contiguous MPI point-to-point communication in this
research. In the remainder of this paper, we discuss
previous attempts at modeling communication
performance. Next, we describe the details of non-
contiguous message communication in MPI. Section 4
addresses the effects of memory access on a parallel
application’s point-to-point communication performance.
Section 5 describes the experimental setup and finally, in
Section 6 we present our experimental results.

2. Related work

Much research exists regarding the communication
cost of message passing for contiguous data. Dongarra et.
al. [18] provides a good overview of message passing
performance issues and measurements. Gropp and Lusk
[8] provide the mpptest tool for measuring MPI message
performance accurately. This tool is currently part of the
MPICH distribution [20] and through experimentation can
help tweak parameters in MPI implementations for
specific platforms. Few studies have targeted the
performance of non-contiguous data. Ashworth [21]
provides an application specific benchmark for non-
contiguous communication in regular-partitioned, grid-
based, distributed finite difference models. This work is
solely empirical and contextually specific, drawing no
general conclusions regarding non-contiguous
communication performance for message passing
applications.

Existing parallel communication models focus on
network interface communication delay. LogP [5] is a
popular, realistic model for parallel computation, which
provides a basis for many succeeding models. L is the
upper bound for the latency, or delay in communicating a
message from its source network buffer to the destination
network buffer. o, the overhead, is the amount of time the
processor is busy during the transmission or reception of a
message. g, the gap, is defined as the minimum time
interval between consecutive message receptions. P is the
number of processor/memory modules. The LogP model
is accurate for fixed-size, small messages. LogGP [1],
where G represents the gap per byte, extends LogP for
systems that provide hardware support for long messages.
Both models ignore network contention since it is a
difficult factor to quantify in estimates of point-to-point
communication. For the special case of active messages,
contention is quantified as the time an interrupt spends

queued at the target processor. This motivates an additional
C parameter for contention, the LoGPC model [2]. Model
accuracy and complexity increase with the number of
parameters.

The above models approximate the communication
latency over the network quite well. None of them
addressed memory access delay at the communication end
points. In our effort to project the inevitability of
introducing a new communication model, we study the
effect of memory access time as a parameter in this paper.
Moreover, previous models and measurements average
overhead at the sender and receiver using half of round-trip
time as the total communication cost. Since the overhead
depends on the message data distribution at the sender and
receiver, overhead may be asymmetrical. Round-trip time
measurements are thus imprecise for non-contiguous data.
They are also imprecise in the context of NUMA
architectures, where the memory access delay is not same
for all the processors.

3. Non-contiguous message passing
communication in MPI

Two methods in MPI can be used to communicate non-
contiguous data. The first is to manually pack all the blocks
of data into a contiguous buffer at the sender node and send
this data block to the receiver. At the receiver the user has
to manually unpack to retain the structure of the data. Here
after this method is termed as “user pack/unpack” method in
this paper. This has the disadvantage of requiring additional
memory-to-memory copy operations at both nodes even
when the communication subsystem has scatter-gather
capabilities. To reduce tedious job of sending non-
contiguous data, MPI implementation provides a
mechanism called “derived datatypes”. Derived datatypes
are a means to describe layouts of data in memory. A
general datatype is constructed as a sequence of basic
datatypes and a sequence of integer displacements. The
basic datatypes are MPI_INT (integers in C), MPI_FLOAT,
MPI_DOUBLE, and MPI_CHAR. The displacements need
not be positive, distinct or in increasing order. A type map
is the combination of data types and displacements. This
type map, together with a base address buf, specifies a
communication buffer: the communication buffer consists
of n entries, where the i-th entry is at address buf + dispi.
[11]

In MPICH implementation, type map of a derived data
type can be represented as a data type tree. Leaf nodes
correspond to basic datatypes and are characterized by their
size in number of bytes. The internal nodes correspond to
derived types, and are described by their repetition count
(for vectors), their extent, size and their children with

associated displacements. The number of children
depends on the type of the node. For instance, a structure
or indexed type has as many children as there are
components in the structure, while a vector has only one
child.

The tree representation suggests how a type map can
be reconstructed and used when packing an instance of a
derived datatype to a communication buffer. By a simple
recursive procedure the tree is traversed from root to
leaves computing the correct offsets in both user and
communication buffers during the descent. When a leaf is
reached copying of the leaf data takes place. The
repetition count of each internal type node determines
how many times this node’s sub-trees are visited. The
overhead with the use of derived datatypes lies in
traversing the data structure that stores type map. Traff
[16] makes an effort to reduce this recursive traversal of
the tree data type in his ‘flattening on the fly’ technique.
In any algorithm, the overhead consists of the following
elements:

1. Time to traverse the data structure to find the

next displacement.
2. Time to calculate the next memory block

location
3. Access that memory location, which may contain

cache miss penalty due to the large message and
page faults or the misses due to the spatial
locality of the data.

All the non-contiguous memory communication
operations can be divided into three types. [8]

1. Fixed length block of data with fixed stride
2. Variable length block with fixed stride
3. Fixed length block with variable stride.

In our experiments we used the first method, where the
fixed length data with fixed stride is passed between two
processors.

4. Overhead in message passing

In parallel program communication of non-contiguous
data, cache misses cause additional non-overlapped stall
time. Cache misses are related to the message size and the
data distribution. In our analysis, we study the memory
costs in message-passing point-to-point communication.
Our observation projects that the send/recv time of a
message in message passing communication is a
combination of startup time, time to copy the data from
application memory to either the buffer or to the buffer on
network interface card from where the data would be
transferred. Portions of latency will be overlapped and
must be removed.

Tsend/recv = tst + tac + tmem + tbuf – tol (1)

tst is the startup time for communication such as sending a
request to start the communication. tac is the time to
calculate the address of the memory location from where
the next data block has to be copied. This cost is significant
when the data is non-contiguous. tmem is the cost of the
copying the message from the sender’s application memory
to the local/NIC buffer or from the receiver’s local/NIC
buffer into its application memory. This includes the cache
miss penalty. If the message size is greater than the buffer
space available, the sender blocks (assuming blocked
communication) until the buffer is free (tbuf). tol is present if
there is any overlapping between the above mentioned
times. Due to the latest scalar processing technology more
than one instruction can be processed within one cycle. In
that case some overlapping would exist where some of tac
can be overlapped by tmem. This is a simple formula of costs
that contribute to the overhead at an end point. Finding out
each cost is the real problem for communication model.

The major factor of variation in the above formula is
memory access time for the distributed data. In this case,
MPI calculates the memory address of the next block when
derived datatypes are used. Non-contiguous memory
accesses cause cache misses where the resulting penalties
that constitute additional overhead. In this paper, we
conduct exhaustive experimentation to project the amount
of memory effect based on non-contiguity. Overhead costs
may be asymmetric. For example in a row-ordered
programming model, a column of a matrix sent is received
as a row at the receiver. The memory access patterns differ
at send/receive ends of transmission so the memory access
overhead is different for the same size message. In Equation
1, the send and receive time are same when data is
distributed similarly.

As mentioned in section 3, non-contiguous messages can
be passed using MPI specified derived datatypes, and user
pack/unpacking method, where user manually packs the
data at the sender and unpacks at the receiver. The tradeoff
is between the extra memory, tedious packing/unpacking
job of the user pack/unpack method and the degraded
performance of derived datatypes. In user pack/unpack
technique, the time to calculate the next memory location is
easy as the user provides those values. The cost of derived
datatypes depend on how many times it needs to access the
tree data structure that contains the block information and
stride information of message.

The other overhead includes copying blocks of data into
a separate contiguous memory location. The performance of
long and contiguous messages is better as they try to avoid
the use of buffering between the sender user memory and
receiver user memory. In that way, the additional memory
copying time is saved. Current implementations of derived

data types are still using the buffer before sending a
message, which increases the communication overhead. In
DSM machines such as SGI Origin 2000, the message is
directly copied into the shared memory, and the receiver
accesses that directly.

5. Experimental setup

5.1. SGI Origin 2K Architecture

Distributed Shared-Memory (DSM) multiprocessors
provide the convenience of shared memory programming
with a scalable design. The SGI Origin 2000 at NCSA
utilizes a cc-NUMA architecture running the IRIX version
6.5.14 operating system. The interconnection network for
128 processors is a 5th degree hypercube with 4
processors (2 nodes) per router. High-speed, dedicated
Craylink interconnects link nodes. The achievable remote
memory bandwidth on Craylink interconnect is
624MB/sec in each direction, which adds a 165ns off-
node penalty and 110ns per hop. As long as the
communication is between nodes within a hypercube, per
hop latency is zero, but the communication to an outer
cube node causes increase in latency.

A directory based tree protocol maintains cache-
coherence. A complex memory hierarchy reduces the
impact of memory latency. Each node contains two MIPS
R10000 processors [12]; each running at 195MHz, and
32kB two-way set associative, two-way interleaved
primary (L1) cache. An off-chip 4MB secondary unified
cache is present as well. Cache and page block sizes are
32 and 4096 bytes respectively. Load misses at L1 and
L2 were measured as 12 and 90 cycles respectively. The
MIPS R10000 is a four-way superscalar RISC processor.
The machine used in testing has 48 195MHz MIPS
R10000 processors, with 14 GB main memory. The
available local memory access bandwidth is 680MB/sec in
each direction. SGI O2K machine is selected as our
platform because of the availability of library to access the
hardware counters. As our study is mainly concentrating
on the effect of local memory references this can be
generalized for commodity cluster architectures.

5.2. Hardware counters

All the commodity processors provide hardware
performance counters to measure and validate the
processor architecture. The MIPS R10000 processor has
two on-chip 32-bit registers to count 30 distinct hardware
events. In our experiments we have measured the events
related to total cycles (event 0), graduated instructions

(event 17), memory data loads graduated (event 18),
memory data stores graduated (event 19), L1 cache misses
(event 25), L2 cache misses (event 26). The overhead of
cache misses on SGI Origin 2000 is measured [mucc97] as
1 cycle for register access, 2-3 cycles for an L1 cache hit,
7~13 cycles for an L1 cache miss, 60~200 cycles for an L2
cache miss. This shows that the overhead increases
massively if a L2 cache misses occur. We have chosen these
counters to study the memory effect on communication as
they reflect the memory operations for any processor.

5.3. Performance testing program

We used a program, which is similar to mpptest [8]
programs that measures the performance of contiguous
blocking, non-blocking and non-contiguous message
communication. In this program we inserted hardware
counter measuring routines before and after each MPI
communication calls to measure number of cycles, cache
misses, total instructions, load/store instructions. Messages
are passed between two processors. All these tests are
performed on NCSA’s SGI Origin 2000 machine with the
environment specified earlier in this section. In non-
contiguous message passing program, the sender processor
sends a block of a matrix, with various strides for various
message sizes. We defined a data type called columntype,
which collects the blocks, each of block size 1, which are a
stride apart. We measured the primary cache misses,
load/store instructions to show how memory references are
affecting communication performance with data distribution
and message size.

6. Results and analysis

Our experiments are divided into three categories.

1. Blocking communication overhead of contiguous
and non-contiguous data, with various message
sizes ranging from 64bytes to 1024kB.

2. Blocking and non-blocking communication cost
for contiguous and non-contiguous data, with
various message sizes

3. Blocking communication overhead of non-
contiguous data, with the use of derived datatypes
and user pack/unpack method.

We measured the primary cache misses, load/store
instructions to show how memory references are affecting
communication performance with data distribution and
message size.

6.1. Contiguous message vs. Non-contiguous
message passing

Fig. 1 shows how the number of cycles is increasing

with message size at sender processor, with a fixed stride
of 16. When the message size is less, most of the message
is within the cache and the number of cache misses is less.
Increase in the message size, causes more memory
operations (load/store) and when the total message size is
more than the cache memory available, cache misses
increase. As explained in the section 4, with the number of
cache misses increase, the amount of memory stall time
increases affecting communication time. Until the
message size is below 256kB increase in number of cycles
is below the proportionate factor due to the processor’s
pipelining. After 256kB the sender starts blocking to wait
for a matching receive before sending a message. That

causes extra waiting time at the sender. In a separate
experiment we measured the number of load/store
instructions. Number of loads and stores increase with the
message size, which proves that the overhead at a
sender/receiver is a parameter of memory operations. The
number of load and store instructions also increases below
the proportionate factor with the message size until the
explicit blocking at the sender starts. When the buffering
starts load/stores increase more than the message size
increment factor.

The reasons for extra cycles in the case of non-
contiguous message passing are increase in cache misses
and blocking property of MPI blocking send. We
investigated further how cache misses are affecting the total
number of cycles. Fig. 2 shows the number of cache misses
information. As we have stated earlier, after 256kB
message, the number of cache misses are increasing at a
greater number. Due to this the total cost of communication

Fig. 1 Number of cycles for contiguous vs. non-contiguous message passing

C y c l e s - C o n t i g u o u s v s n o n - C o n t i g u o u s

0

2 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0

1 4 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

M e s s a g e s i z e

C
yc

le
s

C o n t i g u o u s

N o n - c o n t ig u o u s

Cache misses - Contiguous vs non-contiguous

0
200000
400000
600000
800000

1000000
1200000
1400000

1 10 100 1000 10000

Message size (in kB)

C
ac

he
 m

is
se

s

Cache misses
(contiguous)

Cache misses
(non-contiguous,
stride = 16)
Cache misses
(non-contiguous,
stride = 32)
Cache misses
(non-contiguous,
stride = 64)

Fig. 2 Number of primary cache misses for contiguous vs. non-contiguous message passing

from sender to receiver cannot be considered as a constant
as previous models are assuming. We have investigated
further into the next level of cache, secondary cache to
observe the contribution at that hierarchy level. Fig. 3
shows how the secondary cache misses affects the local
communication. Each secondary level cache misses costs
approx. 200 cycles, which means the total cost increases
massively with secondary miss. The misses are very high
at larger message sizes.

6.2. Blocking vs. Non-blocking

In our experiments, we have measured the total number
of cycles and primary cache misses in order to study the
impact of memory on these communication patterns.
MPI_Send is used for blocking send and MPI_Isend is

used for non-blocking communication. We observed that
until the message size is 64kB, the difference between
blocking and non-blocking communication is insignificant.
But from 256kB, the communication is insignificant. But
from 256kB, the blocking communication overhead is very
high compared to non-blocking communication for both
contiguous and non-contiguous message data.

Fig. 4 shows that the number of cycles or cache misses
for blocking communication are almost equal or a bit higher
than that of non-blocking communication. But, for non-
contiguous messages, the ratio of blocking to non-blocking
communication overheads is 3 and 10 at message sizes,
256kB and 1GB. This is because, blocking send starts
buffering at this point and it causes extra memory copy
operations, which is not necessary for non-blocking send. If
the buffer cannot accommodate to store the entire message,
then the message is sent in parts, which add up to the buffer
wait time. This illustrates the need of including buffer

L2 Cache misses

0
100000
200000
300000
400000
500000
600000

10 100 1000 10000

message size

L2
 m

is
se

s

L2 misses
(Contiguous)
L2 misses (non-contig)

Fig. 3 Number of secondary cache misses for contiguous vs. non-contiguous message passing

Blocking vs non-blocking

0
20000000
40000000
60000000
80000000

100000000
120000000
140000000

10 100 1000 10000
M e ssage size (in kB)

N
um

be
r o

f c
yc

le
s

contiguous ,
blocking

contiguous, non-
blocking

non-contig,
blocking

non-contig, non-
blocking

Fig. 4 Blocking vs. non-blocking performance for contiguous and non-contiguous messages

waiting time as a factor of communication overhead. The
increase of memory effect with message size depends on
the buffering protocols and the implementation of the
communication calls.

6.3. User pack/unpack vs. Derived Datatypes

In other experiments, we have measured the number of
instructions, loads, stores and the primary cache misses
for contiguous and non-contiguous message sending, with
varying stride and blocking communication. In non-
contiguous communication, we used pack/unpack method
such as PVM, and MPI derived datatypes. But derived
datatypes proved to have more overhead cost, which
degrades the performance. We observed that the increase
of overhead with the stride is not very high. But the
difference in memory effect between contiguous and non-
contiguous communication is large. The difference
between pack/unpack method and derived datatypes
method is also very high. This shows that the derived
datatypes are increasing the overhead due to the
displacement computation. In derived datatypes method,
the stride effect starts increasing when the stride is more
than the block size of the cache.

Measurements for sending a contiguous block of 4 kB
are: 43,230 cycles, 9,058 graduated instructions, 3,119
load instructions, 2,390 store instructions, and 1231 L1
Misses. Table 1 and Table 2 illustrate the number of
memory parameters for the point-to-point communication
sending performance of non-contiguous data in two
methods, the MPI based derived datatypes and user
packing (packed manually) method. As explained earlier,
in MPI derived datatypes, the data is directly copied from
the various addresses dynamically. In user packing, the
user packs all the non-contiguous data into one buffer and
sends it. All the counters, (cycles, graduated instructions,
loads and store instructions) are very high for derived
datatypes method. Moreover the overhead is increasing
with the stride (16, 32, and 64) gradually. This increment
factor depends on cache size and its block size. With the
user packing the increase is very small, which is almost
negligible. According to our measurements, the ratio of
performance with MPI derived datatypes and user packing
is at least 4. This increases with the stride, as the user
packing doesn’t cost any further increase with the stride.
This is mainly due to the excessive cost to compute the
next data block in non-contiguous data using derived
datatypes. This is the tradeoff between the user’s effort to
pack and the performance. The measurements for larger
message sizes proved the same, that the derived data
communication cost is far greater than the user packing
method, for fixed block size and varying message size
non-contiguous data. Based on these results we state that

the time to traverse the tree data type to obtain the
displacements is pretty high. If the data structure that stores
the displacements is made simple, then the performance
could become as good as that of the user pack/unpack
method. In both cases the number of memory references is
very high compared to that of sending a contiguous
message. This incites a necessity of a communication model
that is aware of memory references. A further study is in
progress to break down the overhead costs, which enables
to observe the distribution of tree traversal cost.

7. Conclusion

It was believed that data allocation is not a noticeable

factor of communication in a cluster-computing
environment. All the existing parallel programming models
consider cost of memory access either constant or
negligible. Through our experimental testing, and case
studies, in this research we have shown that memory
operations are a major factor in communication cost at a
sender or a receiver, especially when data is non-
contiguous. In blocking communication, the number of
memory operations increase proportionately with message
size and non-contiguity until there is no blocking. With the
added blocking the overhead cost increases drastically.
Experimental results show that non-contiguous data
allocation can increase communication overhead ranging
from 4 to 10 times. The ratio of blocking to non-blocking
communication overheads is 3 to 10. Performance with user
packing is better than MPI derived datatypes by 3 to 8
times. This is proved by the variation of number of cycles,
cache misses, load/store instructions. As the performance
evaluation of parallel applications give great insight into its
design to parallel programmers, it is important to project the
communication overhead at seder/receiver, so that the
design can be improved.

This drastic performance degradation of MPI leads many
programmers to use their own functions instead of using
MPI. It's the responsibility of performance analysts to
provide convenience to the programmers, so that a
consistent performance is achieved and the cost of hiring
highly knowledgeable programmers. We have introduced
the concept of memory-aware communication to emphasize
the data allocation effect on communication. This study
proves that there is a necessity of introducing a new
communication model that deals with these memory
references. MPI implementation is a major success for the
message-passing paradigm. MPI provides a convenient way
to handle the non-contiguous messages. The current MPI
implementations do not fully aware the data access factor in
communication. These need to be re-engineered and
improved by using better flattening techniques.

8. Future work

 We are currently developing memory aware

communication model for parallel computing. We
practically applied our techniques to two architecturally
distinct systems, an IA32 Beowulf and the MIPS-based
SGI Origin 2000. Using that model we accurately (within
+80% and –60%) predicted the cost of regular packing
and unpacking algorithms for varying data types and
architectures. Our other objective is to improve the
performance of MPI derived datatypes implementation, by
observing memory operations. This work is progressing in
collaboration with Argonne National Laboratory.
Currently we are working on breaking down the costs
defined in equation (1). Based on these observations of
our experiments we have developed Memory-logP model,
which predicts parallel application communication latency
considering data access delay. l parameter of Memory-
logP model is the additional cost caused due to the non-
contiguous accesses. More details about this model can be
found in [21].

9. Acknowledgements

We thank Dr. Bill Gropp, Argonne National

Laboratory, and Dr. Eric Salo, developer of SGI MPI,
who helped us in understanding MPI implementation. We
are grateful to NCSA, which allowed us to run our
programs on their SGI Origin 2000 machine.

10. References

[1] A.Alexandrov, MF Ionescu, KE Schauser, and C. Scheiman.

“LogGP:
Incorporating Long Messages into the LogP Model - One
Step Closer Towards a Realistic Model for Parallel
Computation”, In Proc. Symposium on Parallel Algorithms
and Architectures (SPAA), pages 95--105, Santa Barbara,
CA, July 1995.

 [2] Csaba Andras, Moritz Matthew, I. Frank. “LoGPC:
Modeling Network Contention in Message-Passing
Programs”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 12, No. 4, April 2001.

 [3] John L Hennessy and David A Patterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufman,
CA, 1996.

 [4] C.K. Chow, “On Optimization of Storage Hierarchies”,
IBM J.Research and Development, pp. 194-203, May 1974.

 [5] D.Culler et al. “LogP: Towards a Realistic Model of Parallel
Computation”, In Proceedings of Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 1-12, San Diego, California, May
1993

[6] D. Culler, J.P. Singh, A. Gupta: Modern Parallel Computer
Architecture, 1997, Morgan Kaufmann

 [7] Xing Du, Xiaodong Zhang, Zhichun Zhu, “Memory
hierarchy considerations for cost-effective cluster
computing”, IEEE Transactions on Computers, Vol. 49, No.
9, 2000.

 [8] William Gropp, Ewing Lusk, and Deborah Swider
“Improving the Performance of MPI Derived Data types “, in
the Proceedings of MPIDC'99

 [9] William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum, “A High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard”, Parallel
Computing 1996

[10] Bruce L. Jacob, Peter M. Chen, Seth R. Silverman, Trevor N.
Mudge. “An Analytical Model for Designing Memory
Hierarchies”, IEEE Trans. Computers, vol. 45, no. 10, pp.
1180-1194, October 1996.

 [11] Message Passing Interface Forum: “MPI: A message passing
interface standard”, International Journal of Supercomputing
Applications, 8(3/4), 1994.

[12] National Center for Supercomputing Applications Archives,
(NCSA) “Understanding Performance on the SGI Origin
2000” NCSA Online document, URL:
http://archive.ncsa.uiuc.edu/SCD/Perf/Tuning/Tips/Tuning.ht
ml
 [14] James Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. In Proceedings of the24th
Annual International Symposium on Computer Architecture
(ISCA'97), Denver, CO, USA. pp.241-251

[15] X.H. Sun and K. Cameron, “A Statistical-Empirical Hybrid
Approach to Hierarchical Memory Analysis,” Proc. of Euro-
Par 2000, Lecture Notes in Computer Science, Springer,
Sept. 2000.

[16] Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, Falk
Zimmermann. Flattening on the Fly: efficient handling of
MPI derived datatypes. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface. 6th
European PVM/MPI Users' Group Meeting, volume 1697 of
Lecture Notes in Computer Science, pages 109-116, 1999

[17] T. A. Welch, "Memory Hierarchy Configuration Analysis",
IEEE Trans. on Computers, vol. 27, no. 5, pp. 408-415, May
1978

[18] J. Dongarra and T. Dunigan, “Message Passing Performance

of Various Computers,” Concurrency: Practice and
Experience, Vol. 9 No. 10, pp 915-926, 1997.

[19] W. Gropp and E. Lusk, “A High Performance MPI
Implementation on a Shared Memory Vector

 Supercomputer,” Parallel Computing, Vol. 22 No. 11, pp
1513-1526, January 1997.

 [20] M. Ashworth, “The OCCOMM Benchmarking Guide,
Version 1.2”,
http://www.dl.ac.uk/TCSC/CompEng/OCCOMM/, March
1996.

[21] K. Cameron, X.H. Sun, “Memory logP and its implications”,
SCS Laboratory Technical reports, Illinois Institute of
Technology, Chicago. URL: www.cs.iit.edu/~scs

Stride Cycles Graduated
Instructions

Loads Stores L1 Misses

16 570,943 651,383 114,292 55,886 5,954
32 712,683 726,577 132,641 132,577 8,190

64 1,018,968 874,800 167,225 76,208 12,688

Table. 1 Hardware counter values for non-contiguous messages sent using
derived datatypes

Stride Cycles Graduated
Instructions

Loads Stores L1 Misses

16 145,963 128,106 32,132 18,839 1,779
32 140,150 128,292 32,063 18,903 1,797

64 149,629 128,782 31,438 19,031 1,947

Table. 2 Hardware counter values for non-contiguous messages sent using
user pack/unpack

